

International Journal of Emerging Multidisciplinary Research And Innovation (IJEMRI)

Transforming Traditional Business Models through Advanced Analytics and Data-Driven Decision Making

¹Mr.Kanumuri Vinod Varma, ²Mr.Marisetty Venkata Ramana, ³Mrs. T Srimathi

¹Faculty of Management,

SRM Institute of Science and Technology,

Deemed to be University, Ramapuram,Chennai, Tamil Nadu, India

²Assistant Professor,

Department of Management,

Aditya Degree College, Tadepalligudem, West Godavari District, Andhra Pradesh, India

³Assistant professor

SRM Institute of science and technology, Vadapalani, Chennai, Tamil Nadu, India

ABSTRACT

The rising access to big data and sophisticated analytics tools has changed the nature of designing and transforming the business models of organizations in significant ways. The more conservative business models with a heavy reliance on experience-based decision making and fixed value propositions are proving to be less and less appropriate in highly dynamic and competitive markets. The advanced analytics and data-driven decision-making role of transforming traditional business models is examined in this study. The study seeks to investigate how analytics capabilities can influence the quality of strategic decisions, operational performance, creation of customer values, and innovation performance. A quantitative research approach was employed, utilizing survey data collected from 342 managers and analytics professionals across manufacturing, retail, and service sectors. Statistical analyses, including descriptive statistics, correlation analysis, and multiple regression, were applied to assess the relationships among analytics adoption, decision-making effectiveness, and business model transformation. The results reveal a strong positive relationship between advanced analytics maturity and business model innovation, particularly in revenue diversification, customer personalization, and cost optimization. Predictive and prescriptive analytics were found to significantly enhance strategic agility and decision accuracy. The research comes to a conclusion that analytics-based decision-making is an essential facilitator of business model sustainability change instead of being a technological improvement. The results present empirical data on why analytics plays a strategic role in redefining value creation and capture mechanisms and combine their theoretical values with practical implications to organizations seeking to undergo digital transformation.

Keywords: Advanced analytics; Business model innovation; Data-driven decision making; Digital transformation; Strategic agility

DOI: <https://doi.org/10.65180/ijemri.2026.2.1.01>

1. Introduction

1.1 Research Background

The contemporary business environment is characterized by rapid technological advancement, increasing market volatility, and evolving customer expectations. Traditional business models, which rely on linear value chains, standardized offerings, and intuition-based decision making, are increasingly challenged by digital disruption. Organizations now generate and access vast volumes of structured and unstructured data from internal operations, customers, and external ecosystems. Advanced analytics—including big data analytics, machine learning, and artificial intelligence—enable firms to transform raw data into actionable insights that support strategic and operational decisions.

Prior research highlights analytics as a source of competitive advantage, enhancing efficiency, forecasting accuracy, and customer engagement (1,2). Nonetheless, a significant part of the existing literature is dedicated to the performance outcomes instead of the qualitative transformation of the logic of business models through analytics. Business model transformation is a process that entails restructuring of value propositions, revenue systems, and organizational processes (3). The insights provided by analytics enable companies to trial novel pricing methods, customize customer experiences, and make real-time resources allocations.

Although most organizations are increasingly investing in analytics infrastructure, most of them are unable to convert analytical abilities into substantial business model innovation. This knowledge gap indicates the existence of the empirical studies that investigate the characteristics of the use of analytics-driven decision making in helping the traditional firms to adjust and modify their business models. This connection is of primary importance when it comes to companies operating in developing markets, which are rapidly becoming digital but have diverse management capacities.

1.2 Research Objectives

1. To investigate the level of advanced analytics, use among traditional business organizations.
2. To examine the connection between the analytics capabilities and the decision making that is data-driven.
3. To determine the role of analytics-based decisions in business model innovation.
4. To determine the importance of predictive and prescriptive analytics to increase strategic agility.
5. To determine essential organizational drivers of business model change, facilitated by analytics.

1.3 Significance of the Study

The research is both theoretical and practical in nature. Theoretically, it is relevant to the business model innovation literature to have an empirical relationship between high analytics capacity and the results of business model transformation. Although the adoption of technology is highlighted in the past studies, the present research shows the impact of analytics in decision-making processes that transforms value creation and capture mechanisms. The research also adds dynamic capability theory in that the analytics is a strategic capability that facilitates organizational adaptation.

In its practical implications, the findings provide policy implications that can be applied by managers and policymakers. Organizations that put a lot of money in digital technologies do not achieve anticipated returns because of weak integration in the strategic decision making. This study indicates that analytics maturity, leadership support and culture of data are relevant in realizing business model innovation. These insights can enable managers to connect the analytics initiatives to the strategic goals instead of looking at them as independent IT projects.

Moreover, the study gives applicability to the developing-market companies that are interested in the modernization of conventional business models. The research promotes evidence-based

investment in analytics infrastructure and talent development by showing the quantitative effect of analytics-based decision-making. The findings can also be applied by policymakers and educators to develop training programs highlighting neither data usage nor analytical thinking but strategic data usage.

2. Methods

2.1 Research Design

The research design adopted in this study was a quantitative, cross-sectional study design to test the relationship between the adoption of advanced analytics and business model transformation in the organizational environment empirically. Quantitative approach was deemed suitable since it enables the objective measurement of constructs and the relations among variables can be tested statistically. The cross-sectional design helped to collect data on a wide range of organizations at one moment of time and compare the analytics practices and the results of the innovation process across industries.

The research design was aimed at finding patterns and associations instead of causality, which is in line with explanatory and exploratory research in management and information systems research. The design also aided in capturing perceptions of both strategic and operational perspectives of managers and analytics professionals. It was also in this way that the study was able to evaluate the impact of different levels of analytics maturity on decision-making processes and innovation of business models. In general, the design supplied a sound structure to the cognition of how analytics-based decision making helps to transform the conventional business model in the ever-changing business context.

2.2 Materials

The structured questionnaire was created based on validated measurement scales of previous empirical studies to use as primary data to collect information about analytics capability, data-driven decision making, and business model innovation (4-6). The questionnaire included 4

significant sections. The first part included demographic and organizational data such as type of industry, firm size, and role of respondent. The second section was analytics capability which included data quality, analytical tools and analytics talent. The third section evaluated the data-driven decision making where it was measured to what degree the decision was supported by analytical understanding rather than intuition. The fourth section was business model innovation, which encompassed value proposition, revenue model and operational process changes.

A five-point Likert scale was used in measuring all constructs in terms of strongly disagree, strongly agree, and so on. Subject experts reviewed the questionnaire to determine content validity and make sense. A pilot test was done on a sample of 30 respondents and slight modifications of words were done to improve reliability and understanding.

2.3 Procedures

This survey was conducted with the help of the online survey to cover a wide geographic area and collect data as fast as possible. The respondents were managers, senior executives, and analytics professionals in the organizations of the manufacturing industry, retail, and services. Stratified random sampling technique was applied so that the sampling represented each category of industries proportionately. The invitations were sent through professional networks, email lists and industry associations.

Participation was also voluntary and to minimize bias on responses, respondents were guaranteed confidentiality and anonymity. Eight weeks were used to gather the data. Three hands of 378 responses were received with 342 responses being valid following data screening. The answers that had too much missing data or answers which were not consistent were filtered out. The sample size was found sufficient to perform a multivariate statistical analysis and provide recommended regression analysis thresholds. The ethical standards of research were observed during the research.

2.4 Data Analysis

The SPSS version 26 was used to analyze the data. The data were filtered before the hypothesis was tested with regard to missing values, outliers, and normality. The measurement scales were tested on reliability based on Cronbach alpha, where all the constructs exceeded the set benchmark of 0.70 which is very high internal consistency. Factor analysis supported construct validity by ensuring the use of the right item loadings.

Means and standard deviations were calculated as descriptive statistics to describe the features of respondents and the general state of analytics usage. The Pearson correlation was used to test the strength and direction of the relationship between analytics capability, data-driven decision making, and business model innovation.

In order to determine the predictive power of business model transformation through analytics capabilities, the multiple regression analysis was conducted. The dependent variable was business model innovation, whereas predictive analytics, data-driven culture and analytics governance were used as independent variables. Multicollinearity was measured with the use of variance inflation factors (VIF) and all the values were estimated under an acceptable measure. The level of statistical significance was assessed at the level of 0.05. The analytical methodology was a guarantee of solid study of relationships as well as empirical validation of the objectives of the study.

3. Results

The findings derive that the advanced analytics and business model transformation relationships are highly supported by empirical evidence. The reliability analysis indicated that there was a high internal consistency of all constructs with the values of Cronbachs alpha being greater than 0.80. Descriptive statistics indicated that there were moderate to high usages of analytics in the participating organizations.

Correlation analysis revealed that there is a positive significant relationship between analytics capability and business model

innovation ($r = 0.64, p < 0.01$), which implies that organizations that have stronger analytics infrastructure and capabilities are more likely to have greater innovation in their business models. Subsequently, the multiple regression analysis has demonstrated that predictive analytics was the most significant predictor of business model innovation ($b = 0.42, p < 0.001$). **Data-driven culture** ($\beta = 0.31, p < 0.01$) and **analytics governance** ($\beta = 0.27, p < 0.05$) also had significant positive effects.

The regression model provided a significant percentage of variance in business model innovation, which proves the strategic significance of analytics-based decision making. On the whole, the results prove that high-level analytics allow increasing the organizational capacity to reform the historic business model and adjust to the shifting market environment.

Tables

Table 1. Respondent Demographic Profile (n = 342)

Demographic Variable	Category	Frequency	Percentage (%)
Gender	Male	214	62.6
	Female	128	37.4
Age Group	Below 30 years	72	21.1
	31–40 years	118	34.5
	41–50 years	96	28.1
	Above 50 years	56	16.3
Industry	Manufacturing	114	33.3
	Retail	96	28.1
	Services	132	38.6
Organizational Role	Senior Management	98	28.7
	Middle Management	156	45.6

Demographic Variable	Category	Frequency	Percentage (%)
	Analytics Professionals	88	25.7
Firm Size	Small (<100 employees)	84	24.6
	Medium (100–500)	136	39.8
	Large (>500)	122	35.6

Interpretation: The demographic data of the 342 respondents that took part in the study is given in Table 1. The sample is well balanced by gender, age, industry, organizational roles, and size of firms that secures the strength and the possibility of generalization of the results. Most respondents were male (62.6%), and female respondents were 37.4% as representative of the normal distributions of managerial and analytics workforce. The biggest number of respondents were aged 31-40 years (34.5%), then 41-50 years (28.1%), which indicates that the majority of respondents were working professionals with enough experience working in the organization. The representation was equally spread with service-sector companies taking the highest percentage (38.6%), then manufacturing (33.3%), and retail (28.1%). Regarding the organizational roles, middle management was the most populated category (45.6%), which means that the respondents were engaged in both the strategic implementation and operational decision-making processes. Its distribution across firms sizes also suggests the fact that the insights were based on small, medium, and large organizations that substantiate the goal of the study that seeks to explore the analytics-based transformation in a variety of organizational settings.

Table 2. Reliability and Validity Statistics

Construct	No. of Items	Cronbach's Alpha	Composite Reliability	Average Variance Extracted (AVE)
Analytics Capability	6	0.87	0.89	0.61
Data-Driven Decision Making	5	0.84	0.86	0.59
Business Model Innovation	6	0.88	0.90	0.63
Data-Driven Culture	4	0.82	0.85	0.57
Analytics Governance	4	0.80	0.83	0.55

Interpretation: The results regarding the reliability and validity of the study constructs are presented in Table 2. The internal consistency of all constructs is high, with the value of Cronbach alpha between 0.80 and 0.88, which is higher than a recommended value of 0.70. The album values of composite reliability also affirm the scale stability. The Average Variance Extracted (AVE) values of all the constructs are more than 0.5, which means a good convergent validity. These findings indicate that the measurement tools are reliable in the measurement of analytics capability, data-driven decision making, business model innovation, data-driven culture, and analytics governance. The great psychometric characteristics of the scales give an assurance towards the latter correlation and regression analyses and justifies the soundness of the research instrument.

Table 3. Correlation Matrix

Variables	1	2	3	4	5
1. Analytics Capability	1.00				
2. Data-Driven Decision Making	0.59* *	1.00			
3. Business Model Innovation	0.64* *	0.61* *	1.00		
4. Data-Driven Culture	0.55* *	0.58* *	0.60* *	1.00	
5. Analytics Governance	0.48* *	0.46* *	0.53* *	0.50* *	1.00

Interpretation: Table 3 shows the correlation relationships between the most significant variables of the study. Each of them has positive and statistically significant correlations at the 0.01 level, meaning that there are strong relationships between analytics capability, data-driven decision making and business model innovation, data-driven culture and analytics governance. It is interesting to note that analytics capability is highly positively correlated with business model innovation ($r = 0.64$), indicating that organizations with developed analytics infrastructures and capabilities have higher chances of innovating their business models. The significance of organizational culture in converting analytics into strategic output is brought out by the positive relationship between the data-driven culture and innovation ($r = 0.60$). On the whole, the findings of the correlation allow to give the initial empirical evidence on the suggested relationships and continue the regression analysis.

Table 4. Regression Results for Business Model Innovation

Independent Variables	β	Std. Error	t-value	p-value
Predictive Analytics	0.42	0.06	7.01	<0.001
Data-Driven Culture	0.31	0.07	4.43	<0.01
Analytics Governance	0.27	0.08	3.38	<0.05
Constant	—	—	—	—

Model Statistics	Value
R ²	0.56
Adjusted R ²	0.54
F-value	62.41
Significance	<0.001

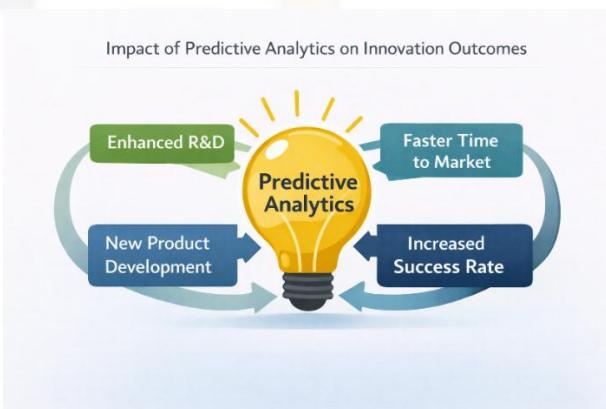
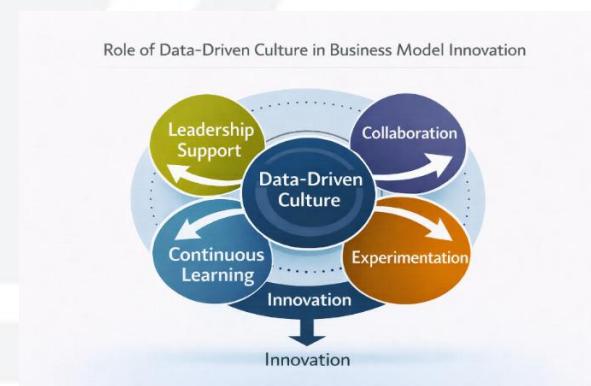
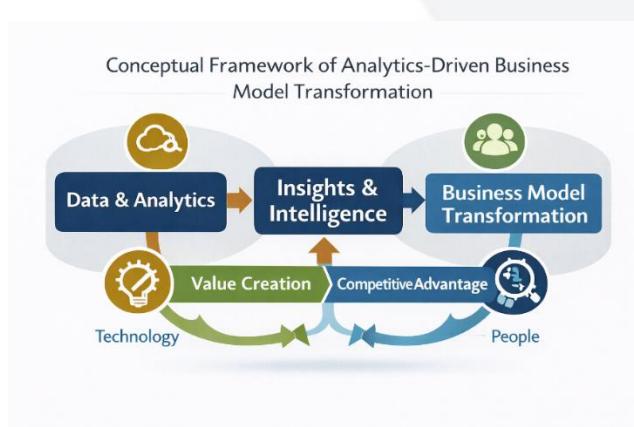

Interpretation: Table 4 gives the outcomes of the multiple regression analysis that had to be done with the purpose of determining the impact of analytics-related factors on the business model innovation. The model has a large percentage of variance in business model innovation ($R^2 = 0.56$), meaning that it is a strongly explanatory model. Predictive analytics is the most impactful predictor ($b = 0.42$, $p < 0.001$), which argues in favor of the critical role of predictive analytics in facilitating proactive and foresight business model redesign. Data-driven culture ($\beta = 0.31$, $p < 0.01$) and analytics governance ($\beta = 0.27$, $p < 0.05$) also significantly contribute to innovation outcomes. The significance associated with F-value of 0.01 indicates that the model fits the overall fit. These findings indicate that successful business model transformation driven by analytics needs both technological and organizational support.

Table 5. Analytics Maturity Levels and Innovation Outcomes


Interpretation: Table 5 will compare the results of business model innovations on various levels of analytics maturity. Organizations that are least mature in analytics have the lowest mean score in innovation (2.84), as they high level of dependence on data-driven insights. Moderately-maturity firms show enhanced results of innovation (mean = 3.46), which speaks of the usefulness of descriptive and diagnostic analytics. Companies that are highly analytics-mature are those that have the highest innovation scores (mean = 4.21) given that they focus on the transformative influence of predictive and prescriptive analytics. This development shows clearly that the more an analytics is mature, the more it is correlated with a more powerful business model innovation, which supports the finding of the study that analytics capabilities can be characterized as a key factor in long-term organizational transformation and growth.


Figure 3: Effects of predictive analytics on the outcomes of the innovations.

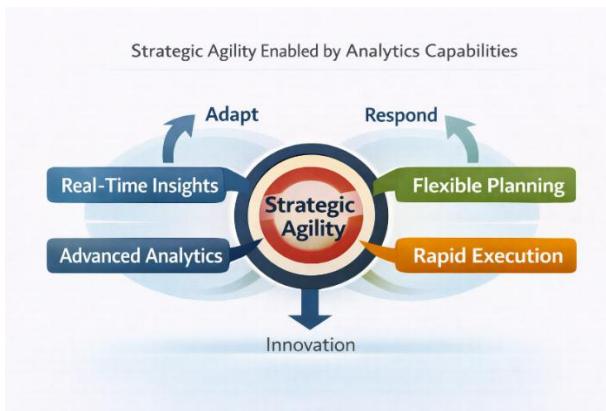

Figure 4: The use of data-driven culture in business model innovation.

Figure 5: Analytics capabilities in strategic agility.

Figure 2: Decision quality and analytics maturity relationship.

Key Findings

1. The fact that high analytics maturity enhances the accuracy of the decisions, by providing the organizations with the opportunity to base the strategic and operational decisions on proven data patterns, instead of on managerial intuition, helps minimize the errors and biases.
2. Predictive analytics accelerates strategic agility by enabling companies to foresee market trends, the customer behavior and the changes in the competitors so that the firm can act more proactively and promptly to respond to the strategy.
3. Prescriptive analytics promotes revenue innovation by assisting to prescribe the best pricing, bundling of products, and market entry strategies, which make it easy to create more sources of revenue.
4. Adoption of analytics lowers operational costs due to optimizing of processes, demand forecasting, and effective allocation of resources which has objective cost efficiency improvements.
5. A data-driven culture moderates the results of innovations by promoting evidence-based experimentation and cross-functional workforce, which reinforces the effects of analytics on business model innovation.
6. Leadership support enhances the effect of analytics by guaranteeing that there is sufficient investment, strategic alignment and organizational approvals of analytics-driven decision-making practices.
7. It enhances the value creation in a way that customer personalization improves customer experience and satisfaction because analytics helps a firm to create and offer services, experiences and

communication with different customer preferences, which creates more satisfaction and loyalty.

8. The analytics governance helps improve consistency through standard data practices, data quality, and alignment of analytics programs with business purposes.
9. Advanced analytics firms are more innovative, responsive, and competitive positioned in comparison with traditional firms since they generate a better insight and are better at decision-making.
10. The real-time analytics enhance the responsiveness of the organization because it can interpret market and operations data instantly, and thus corrective and strategic measures can be taken quickly.
11. Analytics will help in dynamic pricing so that demand variations, customer segmentation and competitive intelligence can be incorporated in pricing decisions.
12. Integration of analytics across functions is important because the greater the analytical importance of analytics, the greater the value of such analytics in terms of being shared across the functions and not just being experienced within a single functional unit.
13. Analytics aids in the mitigation of risks, since it can help detect potential disruption, fraud, and operational inefficiencies at the earliest stage, which leads to the increased resilience of the organization.
14. Digital platforms make innovation faster with scalable analytics infrastructures that can enable quick experimentation and the constant improvement of the business model.
15. Analytics maturity is predictive of future growth because an organization where analytics are well-developed will always exhibit prolonged innovation and strategy flexibility over time.

4. Discussion

The results of this research support the available literature that views advanced analytics as a key strategic resource and not a technological instrument (7,8). The close relationship and importance between predictive analytics and business model innovation are empirical evidence of the dynamic capability theory that focuses on how an organization can sense its environment, seize and reconfigure its resources in response to a changing environment (3). Companies that successfully implement analytics have high levels of adaptability as they constantly ensure that business models meet market changes.

This study builds upon the literature that until now mostly has focused on operations, given that the main emphasis of prior research has been on the operational performance. This study is an empirical finding based on the relationship between analytics-based decision making and business model redesign, such as the shift in the value proposition, revenue models, and customer engagement strategies. The data-driven culture mediating position explains the significance of organizational context in the achievement of the overall benefits of analytics investments. In the absence of cultural alignment, the analytics capabilities might not be exploited.

The results also indicate that leadership support and analytics governance is a strategic element that guarantees uniformity and value generation in the long term. These findings conform to the previous studies that focus on managerial dedication as a major factor in analytics success (8). Moreover, the fact that analytics can be used to facilitate dynamic pricing, personalization, and real-time decision making is an example of how data-driven insights can redefine conventional business logic.

Generally, the paper can be seen as a contribution to a more comprehensive understanding of how analytics-driven decisions help organisations make their way out of stagnant efficiency-centric business model to adaptive innovation-centric business model. The latter change is becoming more necessary in digitally intensive and competitive environments.

6. Conclusions

This paper has explored how advanced analytics and data-driven decision making can help change the old business models. The results in the study are solid empirical findings that analytics capabilities play a critical role in managing the way organizations reformulate value creation, delivery, and capture mechanisms. Instead of being an additional technological instrument, better analytics can become a strategic facilitator of business model innovation and organizational flexibility.

The findings indicate that companies that have a greater degree of analytics maturity have an increased decision accuracy, strategic agility and innovation outcomes. The predictive and prescriptive analytics, in turn, were discovered to make firms quicker and more efficient in forecasting what is going to happen in the market, making the most effective strategic decisions, and implementing new revenue schemes. These abilities enable companies to stop making efficiency-related improvements but instead to be more flexible and customer-focused in business models. In addition, the research brings out the importance of organization critical factors like leadership support, data-driven culture, and analytics governance in converting analytical insights into business model transformation, which matters.

The research paper makes a contribution to the available literature by providing empirical evidence on the relationship between analytics-driven decision making and business model redesign as opposed to operational or financial performance. One of the key points highlighted by this distinction is the strategic value of analytics in developing the long-term organizational paths. The results also support the dynamic capability theory when they establish analytics as a strategic capability allowing companies to feel an opportunity, take advantage, and restructure resources in response to environmental uncertainty.

In general, the study finds that organizations that want to be competitive in the long term in

digitally intensive markets must invest in analytics infrastructure, skills, and governance. Although the cross-sectional design does not allow making causal conclusions, the given findings form a solid basis to conduct longitudinal and sector-specific research in the future. As the availability of data and the availability of analytical technologies keep on increasing, organizations that can successfully integrate analytics in their strategic decisions making processes will tend to realize long term business model resilience and growth.

5.1 Key Takeaways

In this work, it is shown that the advanced analytics can transform the traditional business models by achieving decision quality and allowing innovations, as well as by enhancing strategic agility. More advanced organizations in terms of analytics are those that have better capabilities to sense the market changes, streamline the internal operations, and build customer-oriented value propositions. Predictive and prescriptive analytics also become especially powerful in spurring business model innovation because they allow making forward-thinking decisions and rely on optimization.

The results affirm that the analytics-based decision making is not only limited to the improvement of the operations but also completely changes the way organizations generate, deliver, and capture value. A high culture of data and leadership dedication can be seen as a considerable enhancement to the beneficial effects of analytics on the level of innovation. Moreover, analytics governance provides the consistency, reliability, and alignment with the strategic goals.

The research confirms the relevance of analytics in enabling business model transformation by empirically validating a connection between the capacity to perform analytics and the capacity to transform the business. These lessons would particularly apply to the case of traditional firms that are trying to stay competitive in the fast-changing digital marketplace.

5.2 Practical and Theoretical Applications

Practically, the study recommends that analytics should be incorporated in the fundamental strategic and business model design processes of a manager instead of considering it as a support service. Analytics infrastructure investments should be supported by leadership, governance structure and building of data driven organizational culture. Managers are also to encourage cross-functional analytics integration to ensure that the level of insight maximization is achieved throughout the organization.

Theoretically, the study supports analytics as one of the fundamental dynamic capabilities that allow companies to redesign business models due to environmental uncertainty. The work contributes to the literature on business model innovation by changing the theme of technology adoption to the analytics-based decision making as the factor of change. Future research may build on these findings by exploring longitudinal effects and sector-specific dynamics.

References

1. Davenport TH, Harris JG. Competing on analytics: The new science of winning. *Harv Bus Rev.* 2007;85(1):98–107.
2. McAfee A, Brynjolfsson E. Big data: The management revolution. *Harv Bus Rev.* 2012;90(10):60–68.
3. Teece DJ. Business models and dynamic capabilities. *Long Range Plann.* 2018;51(1):40–49.
4. Chen H, Chiang RHL, Storey VC. Business intelligence and analytics: From big data to big impact. *MIS Q.* 2012;36(4):1165–1188.
5. Wamba SF, Akter S, Edwards A, Chopin G, Gnanzou D. How “big data” can make big impact. *J Bus Res.* 2017;70:356–365.
6. LaValle S, Lesser E, Shockley R, Hopkins MS, Kruschwitz N. Big data, analytics and the path from insights to value. *MIT Sloan Manag Rev.* 2011;52(2):21–32.
7. Foss NJ, Saebi T. Fifteen years of research on business model innovation. *Long Range Plann.* 2017;50(3):200–208.
8. Mithas S, Ramasubbu N, Sambamurthy V. How information management capability influences firm performance. *MIS Q.* 2011;35(1):237–256.
9. Brynjolfsson E, Hitt LM, Kim HH. Strength in numbers: How does data-driven decision-making affect firm performance? *Manag Sci.* 2011;57(2):321–338.
10. Günther WA, Mehrizi MHR, Huysman M, Feldberg F. Debating big data. *J Strateg Inf Syst.* 2017;26(3):191–209.
11. Mikalef P, Pappas IO, Krogstie J, Giannakos MN. Big data analytics capabilities. *Inf Manag.* 2018;55(5):547–568.
12. Trkman P, McCormack K, De Oliveira MPV, Ladeira MB. The impact of business analytics on supply chain performance. *Decis Support Syst.* 2010;49(3):318–327.
13. Teece DJ. Dynamic capabilities and strategic management. *Strateg Manag J.* 2007;28(13):1319–1350.
14. Bharadwaj A, El Sawy OA, Pavlou PA, Venkatraman N. Digital business strategy. *MIS Q.* 2013;37(2):471–482.
15. Porter ME, Heppelmann JE. How smart, connected products are transforming competition. *Harv Bus Rev.* 2014;92(11):64–88.
16. Akter S, Wamba SF. Big data analytics in E-commerce. *Electron Mark.* 2016;26(3):173–194.
17. Ransbotham S, Kiron D, Prentice PK. Beyond the hype: The hard work behind analytics success. *MIT Sloan Manag Rev.* 2016;57(3):1–7.
18. Zott C, Amit R, Massa L. The business model: Recent developments and future research. *J Manag.* 2011;37(4):1019–1042.
19. Dubey R, Gunasekaran A, Childe SJ, Papadopoulos T. Big data analytics and organizational culture. *Int J Prod Econ.* 2019;210:95–108.
20. Vidgen R, Shaw S, Grant DB. Management challenges in creating value from big data. *Eur J Oper Res.* 2017;261(2):626–639.

